1997-Effective Bayesian Inference for Stochastic Programs
نویسندگان
چکیده
In this paper, we propose a stochastic version of a general purpose functional programming language as a method of modeling stochastic processes. The language contains random choices, conditional statements, structured values, defined functions, and recursion. By imagining an experiment in which the program is “run” and the random choices made by sampling, we can interpret a program in this language as encoding a probability distribution over a (potentially infinite) set of objects. We provide an exact algorithm for computing conditional probabilities of the form Pr(P(z) 1 Q(z)) where x is chosen randomly from this distribution. This algorithm terminates precisely when sampling x and computing P(X) and Q(x) t erminates in all possible stochastic executions (under lazy evaluation semantics, in which only values needed to compute the output of the program are evaluated). We demonstrate the applicability of the language and the efficiency of the inference algorithm by encoding both Bayesian networks and stochastic context-free grammars in our language, and showing that our algorithm derives efficient inference algorithms for both. Our language easily supports interesting and useful extensions to these formalisms (e.g., recursive Bayesian networks), to which our inference algorithm will automatically apply.
منابع مشابه
Effective Bayesian Inference for Stochastic Programs
In this paper, we propose a stochastic version of a general purpose functional programming language as a method of modeling stochastic processes. The language contains random choices, conditional statements, structured values, defined functions, and recursion. By imagining an experiment in which the program is “run” and the random choices made by sampling, we can interpret a program in this lan...
متن کامل1 Bayesian Logic Programming : Theory and Tool
In recent years, there has been a significant interest in integrating probability theory with first order logic and relational representations [see De Raedt and Kersting, 2003, for an overview]. Muggleton [1996] and Cussens [1999] have upgraded stochastic grammars towards Stochastic Logic Programs, Sato and Kameya [2001] have introduced Probabilistic Distributional Semantics for logic programs,...
متن کاملDoubly Stochastic Variational Bayes for non-Conjugate Inference
We propose a simple and effective variational inference algorithm based on stochastic optimisation that can be widely applied for Bayesian non-conjugate inference in continuous parameter spaces. This algorithm is based on stochastic approximation and allows for efficient use of gradient information from the model joint density. We demonstrate these properties using illustrative examples as well...
متن کاملBayesian Analysis of Stochastically Ordered Distributions of Categorical Variables
This paper considers a nite set of discrete distributions all having the same nite support. The problem of interest is to assess the strength of evidence produced by sampled data for a hypothesis of a speciied stochastic ordering among the underlying distributions and to estimate these distributions subject to the ordering. We present a Bayesian approach alternative to the use of the posterior ...
متن کاملObject-Oriented Bayesian Networks
Bayesian networks provide a modeling language and associated inference algorithm for stochastic domains. They have been successfully applied in a variety of medium-scale applications. However, when faced with a large complex domain, the task of modeling using Bayesian networks begins to resemble the task of programming using logical circuits. In this paper, we describe an object-oriented Bayesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999